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A B S T R A C T

Forests and their ecosystem services are subjected to uncertain factors, causing drastic changes in forest pro-
duction and/or market conditions, the impacts of which cannot be precisely estimated beforehand. We introduce
a theoretical framework, based on control theory, for robust optimization of forest management under un-
certainty. Forest owners herein regard their decision support system only as an approximation to an unknown,
true, model. Concerns about model misspecification incite them to seek the single harvesting rule that works
well over a set of models statistically similar to their approximation. Accounting for mistrust of decision support
systems in modelling harvesting behavior is particularly relevant in view of uncertainty induced by climate
change. We use a stylized forest model to explore the effects of uncertainty on harvesting decisions, also con-
sidering the role of information aimed at reducing, or making forest owners aware of, such uncertainty. The
simulation results demonstrate that model uncertainty affects harvesting intensity and thus forest development.
Harvest levels are lower for forest managers concerned with model uncertainty, favoring stand volume over
harvest revenues. Further, information release affects the level of perceived uncertainty and thus harvesting
behavior and forest development, reaffirming the importance of information as a forest policy instrument.

1. Introduction

Uncertain factors are continuously affecting the functionality of
ecosystems and, thus, the provision of ecosystem services. Notably, the
still rather weak understanding of the magnitudes of climate change—if
not the general direction—and even more the manifestations thereof
and how forest ecosystems will react, creates considerable uncertainty
and poses challenges for forest managers (Park et al., 2014) and natural
resource management in general (see, e.g., Aplet and McKinley, 2017).
The forest sector—providing traditional products and bioenergy as well
as new forest-based products—plays an increasingly crucial role in the
bioeconomy (Ollikainen, 2014). Consequently, objectives and attitudes
of forest owners/managers—expected to supply increasing volumes of
woody biomass (see, e.g., Rinaldi and Jonsson, 2013)—are crucial,
particularly those that govern harvest behavior.

Risk has been extensively debated in forest economics. Research has
focused on deriving the optimal rotation age when landowners are risk-
neutral—exceptions to risk-neutrality are Clarke and Reed (1989),
Alvarez and Koskela (2007), Lien et al. (2007)—and risk derives from
uncertain future market perspective (Brazee and Mendelsohn, 1988;
Willassen, 1998; Insley, 2002; Chang, 2005), or the possible arrival of a
natural event compromising harvests (Englin et al., 2000; Amacher
et al., 2005; Busby et al., 2013). All these studies implicitly assume that

risk can be precisely modeled, meaning that the probability distribution
characterizing any random event (e.g., the occurrence of a natural
disaster, or the future wood price) is known in advance.

This assumption does not reflect reality, as the unique and full
modeling either of the impact and the magnitude of a possible extremal
shock affecting forest stand development (and the provision of related
amenities) or the market conditions for forest products is concretely not
possible. Thus, the forest growth and yield model used to describe the
possible evolution of the stand after the shock becomes uncertain. In
particular, Amacher (2015, p. 40) identifies uncertainty as “…cases
where the forest landowners do not even know the distribution de-
scribing states of nature for market parameters, natural events, or their
forest stocks”. Hence, the word ‘risk’ should be used to describe cases in
which the realization of future variables cannot be determined in ad-
vance, but the distribution governing these realizations is known. This
is the case, for example, when the future wood price is not known in
advance, but it is assumed to follow a specific distribution with unique
and certain mean and variance. In these cases, it is possible to define an
expected value of the utility of the forest owner, as he knows the
probabilities of any occurrence affecting the forest, and he acts based on
that information. ‘Uncertainty’, instead, refers to cases for which the
random distribution over the possible states of nature is not known in
advance. It is important to notice that uncertainty does not exclusively
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refer to possible negative shocks—e.g., a negative demand shock and
ensuing falling roundwood prices resulting from a large outflow of
timber from salvage logging (as that caused by bark beetle infestation in
Central Europe in 2019)—but also positive ones, e.g., unforeseen po-
sitive forest growth effects related to climate change (CO2 fertilization,
longer vegetation periods) as well as positive demand shocks.

In forestry, uncertainty can affect forest landowner decision in many
instances. First, the future distribution of market parameters might be
unknown when landowners are to decide upon land-use or forest
management decisions. Second, the forest stand, once established, is
subject to the arrival of catastrophic natural events, whose magnitude
and frequency cannot be a priori described by a single probability
distribution. Finally, forest stand growth and associated amenities
might follow unknown paths.

In this paper, we will focus on the second and third instances.
Harvest behavior models typically assume that forest owners/managers
fully trust the forest growth and yield model used for decision support
in accurately representing the dynamics of their forest stands.
Therefore, standard economic procedures, based on the assumption that
the model is true (see, e.g., Koskela, 1989; Ollikainen, 1993; Uusivuori,
2002; Gong and Löfgren, 2003; Rinaldi and Jonsson, 2013), are used.
However, predictions of this type of model frameworks are necessarily
imprecise due to model misspecifications. This is a well-known problem
for any modeler, often mistrusting his/her own model while calibrating
it or performing specification tests. Therefore, the most straightforward
reason for including the fear of model misspecifications in a theoretical
framework is that, if modelers face specification doubts, so might the
modeled decision makers (such as forest owners/managers in a harvest
behavior model). This is not the least relevant in view of climate
change, with forest growth models traditionally having been based on
assumptions of climates and disturbance regimes varying within
narrow, historically understood boundaries (Park et al., 2014), or even
implicitly that local climate conditions will remain constant
(Guariguata et al., 2008).

Thus, we introduce and demonstrate a theoretical framework
wherein forest owners regard the forest growth and yield model used
for decision support only as an approximation to an unknown model
governing forest growth. Specifically, they assume that any model
which is sufficiently (statistically) similar to their approximation might
be the true growth model. We maintain that this particular re-
presentation could be sui for representing, in a stylized way, the effect
of any natural shock on forest growth. Firstly, because the magnitude of
the shock itself is unknown, second because different combinations of
increases in temperature, precipitation, and CO2 concentration do not
have a unique effect on plant growth. Additional uncertainty could
possibly be induced by a general lack of information regarding extreme
events, for which empirical knowledge and extended databases are not
available due to the rarity of such events.

The next section introduces the theoretical framework. It describes
the model used to represent forest growth, as well as the optimization
problem for two representative forest owners, one who is unconcerned
and another one who is concerned with model uncertainty. In the
subsequent section, we conduct numerical analysis to test our set-up.
The final section concludes the paper, discussing policy implications of
the analysis and outlining possible future research developments.

2. The framework

We follow the methodology used in Hansen and Sargent (2007),
wherein robust control techniques are adapted to acknowledge mis-
specification in economic modeling. Control theory has been widely
applied to economic problems characterized by multi-stage decision
processes. More specifically, optimal control of any economic problem,
aimed at attaining a desired objective, can be defined as a problem of
dynamic optimization, wherein an intertemporal objective function is
maximized with respect to specific control variables, in order to satisfy a

number of intertemporal constraints defined over a set of state variables.
The solution to this problem involves finding an optimum for the ad-
missible control variables, and then apply them to the system’s dy-
namics to derive the optimal trajectory of state variables. Classical
control theory assumes that the dynamics governing the intertemporal
transitions of state variables (the so-called model) are well known in
advance by the decision maker (and by the modeler), and, furthermore,
they are correctly specified.

However, model misspecification is a problem in economics, and
this is why robust control came to the fore. Robust control theory
considers a (dynamic) model only as an approximation to an unknown
and unspecified model actually governing the process (or generating
the data in econometrics applications). Therefore, a decision maker
should seek robust decision rules and estimators that work over a con-
tinuous set of models near an approximating one, which is no longer
considered true, but rather plausible, and which is taken only as a re-
ference model. A closely related concept in economic theory is
(knightian) uncertainty, relating to situations in which the decision
maker describes the possible states of nature not by a unique prob-
ability distribution, but rather through a range of plausible probability
distributions. In these situations, decisions cannot be made using the
standard maximizing utility rule.1 Hansen and Sargent (2007) builds
the bridge between (robust) control theory and (knightian) uncertainty
suggesting the use of robust control methods to account for uncertainty,
and to find the decision that works well over a set of possible deviations
from the model used as reference.

In our framework—acknowledging the possibility for model mis-
specification—forest owners seek the single harvesting rule that works
well, not only for the approximating model, but also over a set of
models statistically similar to their approximation, one unknown ele-
ment of which is considered to be the true growth model. Alternatively,
one might think that a representative forest owner wants to put a lower
bound on the performance of his harvesting decision, meaning that he
tries to make good decisions when his model approximates the correct
one. The harvesting decision is clearly related to the magnitude of the
set of models the forest owner is considering as alternatives to the ap-
proximating one. This in turn depends on the degree of adverseness to
uncertainty of the forest owner, or, alternatively on his/her degree of
confidence in his approximating model. Specifically, the more averse,
the less confident, he/she is, the higher the degree of precaution and
the larger the set of alternative models considered. Forest owners re-
present a heterogeneous category in terms of objectives (see, e.g.,
Rinaldi et al., 2015), but also as to the degree of knowledge regarding
the biological properties of their stands. The suggested framework al-
lows the inclusion of such heterogeneity, by considering an approx-
imating model (or decision support system) common to all agents,2 but
characterizing them with different agent-specific degrees of mistrust of
that model.

In the following, we will consider a single representative forest
owner with an unspecified quadratic objective function, whose forest

1 Gilboa and Schmeidler (1989) discuss how a max–min rule smooths, or
averages, utility distributions over the set of plausible odds, thus making the
decision maker better off. This special characterization can be understood
imagining a malevolent nature that wants to minimize the same objective as the
decision maker. Hence, the problem reduces to a zero-sum game. In this type of
games, a person can win only if the other player loses, so that the sum of the
two payoffs is exactly zero. Thus one player’s strategy is to maximize his own
minimum gain, while the other player’s strategy is to minimize his own maximum
loss. Thus, given malevolent nature’s move, the decision maker tries to max-
imize the objective function using certain control-decision variables. At the
same time, given the decision maker’s move, the malevolent nature tries to
minimize it, choosing the probability distribution over the probabilities space,
hence the maxmin characterization.
2 This is clearly a simplification. However, it is necessary only for compara-

tive purposes of the results among different agents.
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stand is assumed to grow according to standard linear dynamics. We
expressly assume that the utility derives from the revenues he/she can
obtain from his/her stand—and thus implicitly from the number of cut
trees—as well as from the condition of the stand itself after harvest-
ing—and thus from the number of standing trees. Specifically, let u
(yt,ht) be the time dependent forest owner goal function evaluated at
any time). yt describes the general stand state at a given point in time t,
with yit being the number of trees per acre in size-class i at time t. ht is a
vector whose each component hit denotes the number of trees cut from
size class i at time t. This formulation allows the forest owner to have
partially conflicting objectives, such as attaining a particular revenue
and maintaining a certain biological condition for the stand. In parti-
cular, the forest owner benefits both from the revenues from harvesting,
so that he tends to harvest more, as well as from the amenities provided
by a richer stand, so that he tends to preserve the stand’s growth. He
therefore faces a tradeoff between the two objectives. Hence, he/she
will favor one or the other based on the resulting optimal harvesting
rule, and, consequently, on his/her own degree of uncertainty aversion.

2.1. Growth dynamics

Let us consider a simple growth and yield model for an uneven-aged
forest stand, relying on the matrix model of uneven aged forest man-
agement of Michie and Buongiorno (1984). Uneven-aged forest are
characterized by the coexistence of many trees of different age and size
on small tracts of land, however, trees are generally grouped in patches
of similar age, which are usually too small to be administered as even-
aged compartments. In uneven-aged forest, there are always trees left
on each hectare, even immediately after harvest. Regeneration usually
comes from the stock of saplings in the understory emerging through
the openings left by cutting the large trees. Therefore, this form of
management works best with trees that are shade tolerant, further, it is
very attractive for forests managed for multiple uses, including re-
creation. The model we present here deals with an uneven-aged stand.
The stand we consider should be treated as a unit because it has uni-
form land quality, topography, and species composition. As in Michie
and Buongiorno (1984), the state of a stand is described by the size
distribution of trees on an average hectare.

For simplicity, let us assume that there are only three tree size-
classes characterizing the stand. As before, we denote by the vector yt

the general stand state at a given point in time t, where yit is the number
of trees per acre in size-class i at time t. Over time, the stand state
changes because some trees die, some are cut, some advance to a larger
class, and new trees appear in the smallest size class. The stand growth
model is a set of equations that predicts the state of the stand at time
t + 1, given its current state. The time from t to t + 1 is a fixed unit. ai,
is the fraction of live trees in size class i at time t that are still alive and
in the same size class at time t + 1. ci is the fraction of live trees in size
class i at time t that are still alive and have grown into size class i + 1 at
time t + 1. The time unit used is short enough that no tree can skip one
size class. Consequently, the fraction of trees in age class i at time t that
are dead at time t + 1 is 1-ai-ci, because a tree can only remain in the
same class, grow into a larger class, or die. Therefore, the tree-size
distribution Table 1 and the equation for ingrowth fully describe the
state of the stand at the time in which the inventory is conducted.

Following Michie and Buongiorno (1984), we assume that ingrowth

at time t, Rt = R(Bt,Nt), namely the expected number of trees entering
in the smallest class during the time-period under consideration, is a
linear function of a constantW , the stand basal area Bt, and the number
of trees after harvesting Nt = y1t + y2t + y3t –(h1t + h2t + h3t) standing
at time t.

In particular, Rt = W-r1Bt + r2Nt, and r1, r2 > 0. Where Bt = b1(y1t-
h1t) + b2(y2t-h2t) + b3(y3t-h3t). Each coefficient bi is the basal area of
the average tree in the corresponding size class.3

Denoting as before by hit the number of trees cut from size class i at
time t, and by ht the corresponding vector, representing the entire
harvest at time t, the stand growth model is a set of equations that
predicts the evolution of the stand from time t to time t + 1. There is
one equation for each size class:

= + = + ++y a y h R a y h W B r N r( ) ( )t t t t t t t t1, 1 1 1, 1, 1 1, 1, 1 2=

= + + +

+ + + +

a y h W r b y h b y h b y h

r y h y h y h

( ) [ ( ) ( ) ( )]

[( ) ( ) ( )]
t t t t t t t t

t t t t t t

1 1, 1, 1 1 1, 1, 2 2, 2, 3 3, 3,

2 1, 1, 2, 2, 3, 3,= ++y c y h a y h( ) ( )t t t t t2, 1 1 1, 1, 2 2, 2,

= ++y c y h a y h( ) ( )t t t t t3, 1 2 2, 2, 3 3, 3,

Collecting terms, and using matrix notation, the stand dynamics can
be described through a linear state transition law. Setting:

=
+ + +

D
a r b r r b r r b r

c a
c a

0
0

1 1 1 2 1 2 2 1 3 2

1 2

2 3

and E = −D, we can write the stand dynamics of the approximating
model as = + ++y Dy Eh W1t t t1 , where 1 = [1,0,0]T,4

The framework presented above does not consider neither risk, nor
uncertainty. In reality, many random factors could affect the dynamic
growth of the stand. Thus, let us enrich the approximating growth
equation describing the stand dynamic as follows:

= + + ++y Dy Eh W C1t t t t1 (1)

where t is an external disturbance vector process. Notice that the term
C t allows class-specific shocks for all size-classes and, potentially, de-
pending on the specific characterization of the matrix C, also for cross-
classes effects, meaning that the shock of a specific i-class, i, can also
affect another size class j. The disturbance t is only known to be
bounded in some measure, but otherwise unknown. The set of possible
disturbances is denoted by ∑. The size of the set ∑ expresses the concern
for uncertainty (or robustness) of the forest owner. The larger (smaller)
the set, the more (less numerous) are the alternatives to the approx-
imating model considered, the more (less) the uncertainty averse the
forest owner is.

To simplify notation, from now on we will omit the termW1 since
this can be easily included in a transformation D’ of the matrix D, that
describes the dynamics of a vector identical to y augmented with one
additional state. Therefore, the transformed dynamics is

= ++y D y Eh't t t1 , where the transformation D’ is:

D’=

+ + + Wa r b r r b r r b r
c a

c a
0

0
0
0

[0 0 0] 1

1 1 1 2 1 2 2 1 3 2

1 2

2 3
and E = -D’.

Table 1
Tree size distribution matrix.

Size class
is

Proportion of
staying ai

Proportion of
growing up ci

Proportion of dying
1-ai-ci

1 a1 c1 1-a1- c1

2 a2 c2 1-a2- c2

3 a3 0 1-a3

3 The simplest option would be to assume a constant Rt. However, even
though recruitment is quite erratic, it is influenced by the stand state. Michie
and Buongiorno (1980) found that, at least for sugar maple, recruitment was
affected mostly by the stand basal area and by the number of trees per hectare.
Michie and Buongiorno (1980) estimates econometrically the parameters of the
equation for Rt, we use their parameters also here. To not loose generality, in
our model, the constant W is linked to the initial harvest level and not to the
specific value found in Michie and Buongiorno (1980) for sugar maple. Indeed,
general evidence (Michie and Buongiorno (1980)) suggests that recruitment is
aimed at reintegrating harvest from the youngest class.
4 The resulting productW1 is just a column vector with first component equal

to W and the other two to 0.
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yt and ht have been transformed as yt = [y1t,y2t,y3t,1]T and
ht = [h1t,h2t,h3t,0]T

2.2. Optimization problem without uncertainty

When the forest owner considers neither risk nor uncertainty, he/
she will assume that the dynamics of the stand is described by the
equation = ++y D y Eh't t t1 , wherein external disturbances are not in-
cluded. In this case, it is possible to define the expected value of the
utility of the forest owner, as he/she knows the probabilities of any
occurrence affecting the forest and he acts based on that information.
Henceforth, given the growth dynamics for +yt 1 and the objective
function of the forest owner, the corresponding expected utility max-
imization problem is

< <
=

max E u y h( , ), 0 1h
t

t
t t0

0
t

(2)

subject to = ++y Dy Eht t t1 , given the initial state y0 and with β
being an intertemporal discount factor such that 0 < β < 1. E0 de-
notes expectations at time t = 0.

2.3. Concern for risk and robustness

External factors might significantly affect forest growth and the
provision of ecosystem services. However, neither the degree of the
resulting shock nor the reaction of forest ecosystems are known in ad-
vance, leading to considerable uncertainty.

To consider such uncertainty, we assume that a representative forest
owner regards his model = ++y D y Eh't t t1 only as an approximation to
an unknown true forest growth model, wherein external disturbances
are included. A true plausible model is described as:

= + ++y D y Eht t t t1
' (3)

where t belongs to a set ∑ with elements all the possible disturbances
that the forest owner considers plausible, including the case of no-dis-
turbance, that is, 0∈∑ (notice that with the exclusive purpose of sim-
plifying the notation, we have set to the identity matrix the matrix C).
In particular, ∑ is a set of vectors twith components it , where it re-
presents a shock at time t to age class i, which the forest owner/man-
ager considers plausible at the moment of the harvest decision. The
forest owner constructs his own set of conjectures ∑ by collecting and
evaluating information. Shocks outside the set ∑ are considered im-
plausible, and therefore ignored. This of course does not exclude that
the forest owner might have been wrong a posteriori and the realized
shock is actually outside ∑.

Hence, the forest owner believes that forest dynamics are described
by equation (3), for some unknown process tin the set ∑. The size of the
set ∑ is essentially a measure of the discrepancy between the approx-
imating and the true model, as a smaller ∑ implies that the two models,
with and without external disturbances, are difficult to distinguish from
one another. In what follows, we will only consider forest owners who
are either neutral (i.e., ∑ is a singleton whose only element is 0) or
averse to model uncertainty. We will equivalently say that forest
owners are (not) concerned with model uncertainty if they are averse
(neutral) to model uncertainty.

A forest owner averse to uncertainty wants to establish harvesting

rules robust to model misspecification, meaning that they work well
over a set of models of the form (1) under the constraint t∈∑.

The standard way to accommodate for this quest for robustness is to
consider worst-case scenarios, which translates into solving a minimax
problem, that is:

=
min max E u y h( , ),h

t

t
t t0

0
t

(4)

subject to = + ++y D y Eh't t t t1 and t∈∑.
The forest owner/manager is concerned about misspecification of

the growth model and therefore seeks a harvesting rule that will work
well across a set ∑ of models surrounding his approximating one. In
particular, he wants to derive a single harvesting rule that will work
reliably well for all models in the set ∑. At mathematical level, robust
control theory solves this problem by finding a robust harvesting de-
cision by using a Bellman equation in which the forest owner/manager
maximizes his intertemporal objective over feasible harvesting, rules
while a hypothetical malevolent nature minimizes that same objective
by choosing the shock to the growth model. The malevolent nature is
just a device used to construct a lower bound on the performance of the
harvesting rule. A closed solution to the problems above (with and
without uncertainty) cannot be easily found, but it can still be derived
using an appropriate optimization software.

It should be noted that we implicitly assume that shocks are group-
size and time independent. Removing this assumption could exceed-
ingly complicate the optimization problem, leading to unfeasibility. In
the section that follows, we will therefore conduct a numerical ex-
periment to compare optimal harvesting rules with and without a
concern for uncertainty.

3. Numerical analysis

We present a numerical exercise to show a concrete application of
our framework and to evaluate the effects of uncertainty. For simplicity,
we use the same numerical example as in Buongiorno and Gilles (2003),
whose parameters are based on observations from permanent plots in
sugar maple stands in Wisconsin. As mentioned above, we consider
three size (diameter) classes. The framework can, however, be easily
extended to any possible dimension. Further, it is flexible enough to be
enriched by other elements, such as market prices, harvesting costs, and
alternative utility specification. There are three types of representative
forest owners. One who is not concerned with model uncertainty, while
two others are concerned to different degrees (low and high, respec-
tively, or, equivalently, Low UA and High UA). We consider their be-
havior, assuming identical forest stand endowments, summarized in
Tables 2 and 3.

In uneven-aged stands, the number of trees per unit area decreases
progressively as the size of the trees increases. The basal area of an
average tree in each size class, is the area of the cross section of the tree,
measured at breast height. In Table 3, a1 = 0.80 and c1 = 0.04 mean
that 80% of the trees in the smallest size class were in the same class at
time t + 1, while 4% of the trees in the smallest size class grew into the
larger class. The remaining 16% died.

Following Buongiorno and Michie (1980), we set in Rt = W-
r1Bt + r2Nt r1 to −9.7 and r2 to 0.30, and the coefficients b1, b2 and b3

to 0.02, 0.06 and 0.13, respectively in Bt = b1(y1t-h1t) + b2(y2t-

Table 2
Tree distribution.

Diameter class Diameter range (cm) Number of trees (/ha) Average diameter (cm) Basal area of average tree (m2) Total basal area (m2/ha)

1 10–19.9 840 15 0.02 14.8
2 20–34.9 234 27 0.06 13.4
3 35+ 14 40 0.13 1.8
Total 1088 30.0
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h2t) + b3(y3t-h3t) (Table 2). Therefore, using the coefficients in Table 2
and the expression for the matrix D above, we can derive:5

=D
0.92 0.29 0.96
0.04 0.90 0

0 0.02 0.90

We consider 50 years (i.e., 10 time steps). At each time step, a
particular shock could potentially affect the forest, meaning that the
growth in each class could be different from the expected one.

We let the initial condition of the stand to be described by
y0 = [840,234,14]’. The forest owner is a price taker and, given wood
prices available on the market, he has computed the initial harvest level
as h0 = [168,35.1,1.4]’ . Thus, h0 corresponds to the cutting rule taking
20% of the smallest trees, 15% of the mid-size trees, and 10% of the
largest trees. We will also set the constant W for the recruitment to 168.
The harvesting rule and the hypothesis that recruitment is aimed at
reintegrating harvest from the youngest class (hence W = 168) come
from Buongiorno and Michie (1980). Indeed, here we are mainly in-
terested in qualitatively comparing the harvesting behavior of forest
owners with different degrees of uncertainty aversion, the quantitative
results per se are less interesting. The forest owner has two conflicting
objectives. On one side, he/she wants to maximize the volume of his/
her stand to enrich the benefits deriving from the available amenities
and ecosystem services. On the other side, he/she wants to maximize
the harvest level from each size-group to earn profits. The time horizon
considered is 50 years, and no final condition is set.

This particular formulation in terms of objective function is inter-
esting, as it allows for a trade-off between the realization of a particular
harvest level and the attainment of a specific distribution for the forest
stand. It is of interest to analyze whether forest owners will favor one
objective over the other depending on their level of aversion to model
uncertainty. We would like to emphasize that our model per se does not
restrict the choice of the objective function. Similarly, in this exercise,
we have adopted a number of simplifications/restrictions, which are
not strictly requested by our setting. Specifically, we have set to the unit
the price of harvest from each size group, and we have not considered
harvesting costs. Implicitly, we have also assumed that the economic
value for amenities/ecosystem services from a certain forest area is in
1:1 relation with the growing stock of the area in question. We want to
emphasize that here we are only showing how our framework could be
applied. Further, as our focus is uncertainty, we did not want to in-
troduce any other element that could possibly impair the interpreta-
tions of our results.

The optimization problem of the forest owner consists in choosing
the optimal harvest level h to minimize

+
=

E y h( )
t

N
t

t t0
1 (5)

under the dynamics described above, and the initial levels y0 and h0.
We set N to 10 and β to 0.97, the exact values of these two parameters
do not affect the qualitative relations and results of our analysis.

Next, we consider three alternative harvesting behaviors, one cor-
responding to a forest owner who does not consider model uncertainty,

and two corresponding to two forest owners who consider model un-
certainty, but to different degrees. The two optimization problems, with
and without the concern for model uncertainty are respectively:

+
=

max E y h( )h
t

N
t

t t0
1 (6)

subject to = ++y Dy Eh ,t t t1 given the initial state y0 and harvest
level h0

and

+
=

min max E y h( )h
t

N
t

t t0
1 (7)

subject to = ++y Dy Eht t t1 , given the initial state y0 and harvest
level h0

In the following, the label Neutral will identify the agent who is not
concerned with model uncertainty and fully trusts the model. The other
labels, Low UA and High UA, identify forest owners that are concerned
with model uncertainty, with a low and high, respectively, level of
aversion. Next, we need to define the ambiguity sets for the ambiguity
averse agents. In the analysis that follows, we are not really interested
in quantitatively evaluate the effect of uncertainty, but rather to qua-
litatively describe the effects of increases in such uncertainty. It is
therefore essential to define the ambiguity sets of Low UA and High UA,
so that the two forest owners are comparable in terms of ambiguity
aversion, and, in particular, Low UA is less averse than High UA. This
implies that the ambiguity set of Low UA should be a subset of the one
of High UA. The simplest way to ensure this is to consider two plausible
(positive or negative) percentage variations from the initial stock, with
the one of Low UA being smaller in absolute value than the one of High
UA. Thus, for simplicity, we will assume that the Low UA considers as
plausible variations from the reference model of up to 10% from the
initial stock, while the High UA of up 15%. We are not assuming that
only negative shocks are plausible, in this way we can consider all types
of uncertainty, possibly including the positive effects on growth re-
sulting from improved planting materials, or those related to climate
change, as well as the possible (negative) damages on forests. Hence
Low UA (High UA) agent believes that the time t shock ε1t in the largest
group will be such that −8.40(−12.6) < ε1t < 8.40(12.6). Similarly,
the time t shock ε2t in the second group is believed to be such that-
2.34(-3.51) < ε2t < 2.34(3.51), and ε3t in the third group −0.14(-
0.21) < ε3t < 0.14(0.21). Again, for simplicity, we assume that these
bounds are fixed for any t, even if this is not a strict requirement of the
model. We want to emphasize that any other selection of these
thresholds would have worked, indeed here we are only interested in
qualitative comparison among the different attitudes of agents with a
different degree of uncertainty aversion, and not in quantitatively asses
their harvesting behavior. Hence we set:

=lowUA { 8.40 8.40, 2.34 2.34, 0.14 0.14}1 2 3

(8)

and =highUA { 12.60 12.60, 3.51 3.51, 0.21 0.21}1 2 3 .
(9)

For the numerical analysis, we use MATLAB integrated with Yalmip
(Lofberg, 2004). Yalmip is a numerical toolbox for modeling and opti-
mization in MATLAB, which is currently freely available online
(https://yalmip.github.io).

4. Results and discussion

There are notable differences in harvesting behavior between the
different owner types. The harvesting schedules of the three forest
owner types for the entire time-horizon (50 years) are reported in
Table 4.

Model uncertainty should affect larger classes more severely than
the smallest tree diameter-class, as in this case uncertainty is reduced

Table 3
Proportion of trees staying in the same class/growing/dying within 5 years.

Size class
is

Proportion of staying
ai

Proportion of growing
up ci

Proportion of dying 1-
ai-ci

1 0.80 0.04 0.16
2 0.90 0.02 0.08
3 0.90 0.00 0.10

5 All parameters in Buongiorno and Michie (1980) are based on observations
from permanent plots in sugar maple stands in Wisconsin.
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by the constant non-stochastic ingrowth (smaller trees are here sy-
nonymous with younger trees). For the same reason, also the difference
between the two uncertainty averse agents, as well as those between
each of the averse agents and the neutral one, should be more pro-
nounced for larger classes. These tendencies are immediately confirmed
when comparing the levels of total harvest for each tree diameter-class:
uncertainty averse agents, harvest less than uncertainty neutral ones, in
particular for larger classes. Indeed, for larger classes, there is less of a
possibility to revert the negative tendency of a possible (negative) shock
in the future while the small tree diameter- class experiences ingrowth
in any period, reducing the perceived ambiguity. A LowUA (HighUA)
agent harvests 44% (67%) less than the uncertainty neutral one from
the third class, 10% (15%) from the second class, and only 8% (10%)
from the smallest class. In addition, the difference between the un-
certainty averse agents is more perceivable for the larger tree class, as
the LowUA harvests 42% more than the HighUA, while for the other
two classes he/she harvests 6% and 3% more from second and first
class, respectively.

We simulate the possible evolution of forest stands, after the reali-
zation of the shock, for demonstration purposes only. We assume that
the shock realized at time 0 (ε0) will persist over time, i.e., ε0 = εt = εt
+1, even if none of the three forest owners is aware of it. We simulate
500 values for the shock in each tree size class, within the bounds
considered by the low UA agent (i.e., belonging to the set ∑lowUA). As
the decision is taken at time zero, the harvest levels are those reported
in Table 4 for each agent. The three plots of Fig. 1 reports, for each
particular size-diameter class (that is, larger, intermediate and smaller,
to each of which it corresponds one plot), and for each owner type (blue
for Low UA, grey for neutral and orange for High UA), on the vertical
axes the simulated growing stock after 50 years of that particular size
class, as a function of the class specific shock, whose intensity is mea-
sured on the horizontal axes.

The growing stock is markedly higher for ambiguity averse forest
managers for all tree size classes at the end of the time horizon, i.e.,
after 50 years (Fig. 1), reflecting lower harvest levels of forest managers
concerned with model uncertainty, favoring stand volume over harvest
revenues. In particular, notice that for low occurrences of the shocks the
stand in the two larger tree size-classes is fully depleted for the un-
certainty neutral agent. In general, also for positive occurrences, the
final growing stock is considerably smaller for the neutral agent.

As the three class-specific shocks are independent, it is not possible
to compare the utility of the three agents. Nevertheless, something
more can be said about the two uncertainty averse agents, at least for
what concerns the average utility deriving from the two larger tree
classes. Indeed, the lines describing the tendencies of the data from the
simulations related to the two uncertainty averse agents are parallel for
the two larger diameter classes. In particular, the growing stock in these
two classes is larger for the high UA agent, approximately for any
possible realization of the shock in the set ∑. Thus, the loss at the end of
the 50 years in terms of utility of the low UA agent could approximately
be measured by the difference between the intercepts of the two ten-
dencies line, specifically −37.917 (that is, 75.083–113) and −11.132

(that is, 22.256–33.388), for the larger and the intermediate class, re-
spectively. This loss is more than compensated by the higher harvest
levels at the end of the 50 years from these two groups (64.37 more
from the larger group and 18.23 from the intermediate one), as the low
UA agent has harvested more due to his higher degree of confidence in
the model.

4.1. The role of information

The restriction t ∈∑ on the specification of the model governing the
growth process has intuitive interpretation in terms of information re-
lease. Thus, one could easily imagine a policy maker that shares his/her
(approximating) forest growth model with forest owners /managers,
simultaneously making them aware that this is only a good approx-
imation of the true model. The true model includes an additional shock

t , whose size is restricted by theset . The more precise the informa-
tion, the smaller is the set of alternative specifications to be considered,
.
The results above could thus also be interpreted in terms of forest

managers differing as to the access to information, specifying the set of
alternative models to be considered by means of two different ambi-
guity sets, LUA and HUA, with includedinLUA HUA. Hence, the set
of alternative specifications considered by the agent LUA is a subset of
the one considered by the HUA agent, in other words, LUA is more
informed. Consequently, the simulation results clearly suggest that is-
suing information can affect harvesting behavior and forest resource
development in the context of model uncertainty, as forest owners vary
their chosen harvest levels depending on whether they have access to a
less ( HUA) or more ( LUA) precise set of information. This is consistent
with findings by Sousa-Silva et al (2016) regarding the importance of
information for climate change related actions of forest managers. In
the context of our example, a policy maker willing to increase (reduce)
harvest levels from all tree diameter-classes should release more (less)
precise information, inducing agents to consider a smaller (larger) set of
alternative model specifications LUA ( HUA).

5. Summary and conclusions

We introduce a theoretical framework accounting for model un-
certainty. Forest owners/managers in the framework regard their de-
cision support system only as an approximation to an unknown, true,
model. This specific theoretical representation is particularly relevant
in view of forest management uncertainty induced by climate change.
Indeed, the understanding of the magnitudes of climate change—if not
the general direction— is still rather weak, and even more so when it
comes to the reaction of forest ecosystems to climate change (see, e.g.,
Belyazid and Giuliana, 2019; Subramanian et al., 2019). In our analysis
we are not assuming as plausible only negative shocks to forests and the
demand for forest products and services, instead all types of uncertainty
are considered, e.g., related to unforeseen positive forest growth effects
from climate change (CO2 fertilization, longer vegetation periods) as
well as positive demand shocks.

Table 4
Harvest levels by forest owner type over tree diameter-class and five-year period.

Tree diameter-class h1 h2 h3 h4 h5 h6 h7 h8 h9 Total over time

Neutral 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 275.17 275.17
2 228.45 24.30 1.64 0.00 17.53 33.27 0.00 10.84 23.71 339.73
1 14.00 0.00 0.17 0.21 0.00 0.16 0.46 0.20 0.00 15.21

LowUA 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 155.09 155.09
2 224.37 19.83 0.52 0.00 15.16 21.05 0.00 6.00 19.83 306.77
1 13.70 0.00 0.00 0.17 0.00 0.01 0.12 0.00 0.00 14.01

HighUA 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 90.72 90.72
2 222.30 17.62 0.00 0.00 13.94 9.54 0.00 2.97 22.17 288.54
1 13.45 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.10 13.63
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A: Large tree diameter-class

B: Intermediate tree diameter-class
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Fig. 1. Simulation of the growing stock (vertical axes) after 50 years for the three owner types (COLOR) for specific possible realizations of the class specific shock
(horizontal axes).
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Our results show that the degree of perceived uncertainty of forest
owners/managers as to the accuracy of their decision support system,
along with their level of uncertainty-adverseness, affects harvesting
behavior and forest development. Therefore, also the perceived level of
uncertainty resulting from the release of information affects harvest
behavior and forest development. The forest owner we consider has
partially conflicting objectives, as he/she tries to maximize revenues
but also to increase stand volume. The simulation shows that the ten-
dency to favor one objective with over the other depends on the degree
of uncertainty and uncertainty aversion, as well as the level and quality
of information received. Thus, information release alleviating the un-
certainty perceived by forest owners would result in a change of prio-
rities between harvesting revenues and the preservation of forest stand
characteristics (the latter amenities here approximated by the growing
stock). This highlights the importance of information as a policy in-
strument in the context of model uncertainty.

It should be underlined that the suggested framework is intrinsically
static, in that the harvesting schedule is established at the beginning of
the period based on the current realization of the shock, with no up-
dating regarding neither the future harvesting schedule nor the avail-
able information and the ambiguity set to be considered. Relaxing this
assumption is an interesting and important point, which we leave for
future research.
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